C# onnxruntime 部署LYT-Net轻量级低光图像增强
目录
说明
LYT-Net: Lightweight YUV Transformer-based Network for Low-Light Image Enhancement
参考:
https://github.com/albrateanu/LYT-Net
https://github.com/hpc203/Low-Light-Image-Enhancement-onnxrun
效果
模型信息
Model Properties
-------------------------
---------------------------------------------------------------
Inputs
-------------------------
name:input_1
tensor:Float[-1, 240, 320, 3]
---------------------------------------------------------------
Outputs
-------------------------
name:output_1
tensor:Float[-1, 240, 320, 3]
---------------------------------------------------------------
项目
代码
using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.Linq;
using System.Windows.Forms;
namespace Onnx_Demo
{
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
}
string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
string image_path = "";
string startupPath;
DateTime dt1 = DateTime.Now;
DateTime dt2 = DateTime.Now;
string model_path;
Mat image;
Mat result_image;
SessionOptions options;
InferenceSession onnx_session;
Tensor
List
IDisposableReadOnlyCollection
DisposableNamedOnnxValue[] results_onnxvalue;
Tensor
int inpHeight, inpWidth;
private void button1_Click(object sender, EventArgs e)
{
OpenFileDialog ofd = new OpenFileDialog();
ofd.Filter = fileFilter;
if (ofd.ShowDialog() != DialogResult.OK) return;
pictureBox1.Image = null;
image_path = ofd.FileName;
pictureBox1.Image = new Bitmap(image_path);
textBox1.Text = "";
image = new Mat(image_path);
pictureBox2.Image = null;
}
unsafe private void button2_Click(object sender, EventArgs e)
{
if (image_path == "")
{
return;
}
button2.Enabled = false;
pictureBox2.Image = null;
textBox1.Text = "";
Application.DoEvents();
//读图片
image = new Mat(image_path);
Mat dstimg = new Mat();
Cv2.Resize(image, dstimg, new OpenCvSharp.Size(inpWidth, inpHeight));
dstimg.ConvertTo(dstimg, MatType.CV_32FC3, 1 / 127.5, -1.0);
float* pdata = (float*)dstimg.Data;
float[] input_tensor_data = new float[1 * 3 * inpWidth * inpHeight];
for (int i = 0; i < 1 * 3 * inpWidth * inpHeight; i++)
{
input_tensor_data[i] = pdata[i];
}
//输入Tensor
input_tensor = new DenseTensor
//将 input_tensor 放入一个输入参数的容器,并指定名称
input_container.Add(NamedOnnxValue.CreateFromTensor("input_1", input_tensor));
dt1 = DateTime.Now;
//运行 Inference 并获取结果
result_infer = onnx_session.Run(input_container);
dt2 = DateTime.Now;
// 将输出结果转为DisposableNamedOnnxValue数组
results_onnxvalue = result_infer.ToArray();
// 读取第一个节点输出并转为Tensor数据
result_tensors = results_onnxvalue[0].AsTensor
var result_array = result_tensors.ToArray();
for (int i = 0; i < result_array.Length; i++)
{
result_array[i] = (result_array[i] + 1.0f) * 127.5f;
}
Mat result_image = new Mat(inpHeight, inpWidth, MatType.CV_32FC3, result_array);
result_image.ConvertTo(result_image, MatType.CV_8UC3);
pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
button2.Enabled = true;
}
private void Form1_Load(object sender, EventArgs e)
{
startupPath = System.Windows.Forms.Application.StartupPath;
model_path = "model/lyt_net_lolv2_real_320x240.onnx";
// 创建输出会话,用于输出模型读取信息
options = new SessionOptions();
options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
// 创建推理模型类,读取本地模型文件
onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径
// 创建输入容器
input_container = new List
image_path = "test_img/1_1.JPG";
pictureBox1.Image = new Bitmap(image_path);
image = new Mat(image_path);
inpHeight = 240;
inpWidth = 320;
}
private void pictureBox1_DoubleClick(object sender, EventArgs e)
{
Common.ShowNormalImg(pictureBox1.Image);
}
private void pictureBox2_DoubleClick(object sender, EventArgs e)
{
Common.ShowNormalImg(pictureBox2.Image);
}
SaveFileDialog sdf = new SaveFileDialog();
private void button3_Click(object sender, EventArgs e)
{
if (pictureBox2.Image == null)
{
return;
}
Bitmap output = new Bitmap(pictureBox2.Image);
sdf.Title = "保存";
sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";
if (sdf.ShowDialog() == DialogResult.OK)
{
switch (sdf.FilterIndex)
{
case 1:
{
output.Save(sdf.FileName, ImageFormat.Jpeg);
break;
}
case 2:
{
output.Save(sdf.FileName, ImageFormat.Png);
break;
}
case 3:
{
output.Save(sdf.FileName, ImageFormat.Bmp);
break;
}
case 4:
{
output.Save(sdf.FileName, ImageFormat.Emf);
break;
}
case 5:
{
output.Save(sdf.FileName, ImageFormat.Exif);
break;
}
case 6:
{
output.Save(sdf.FileName, ImageFormat.Gif);
break;
}
case 7:
{
output.Save(sdf.FileName, ImageFormat.Icon);
break;
}
case 8:
{
output.Save(sdf.FileName, ImageFormat.Tiff);
break;
}
case 9:
{
output.Save(sdf.FileName, ImageFormat.Wmf);
break;
}
}
MessageBox.Show("保存成功,位置:" + sdf.FileName);
}
}
}
}
- using Microsoft.ML.OnnxRuntime;
- using Microsoft.ML.OnnxRuntime.Tensors;
- using OpenCvSharp;
- using System;
- using System.Collections.Generic;
- using System.Drawing;
- using System.Drawing.Imaging;
- using System.Linq;
- using System.Windows.Forms;
-
- namespace Onnx_Demo
- {
- public partial class Form1 : Form
- {
- public Form1()
- {
- InitializeComponent();
- }
-
- string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
- string image_path = "";
- string startupPath;
- DateTime dt1 = DateTime.Now;
- DateTime dt2 = DateTime.Now;
- string model_path;
- Mat image;
- Mat result_image;
- SessionOptions options;
- InferenceSession onnx_session;
- Tensor<float> input_tensor;
- List<NamedOnnxValue> input_container;
- IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
- DisposableNamedOnnxValue[] results_onnxvalue;
- Tensor<float> result_tensors;
- int inpHeight, inpWidth;
-
- private void button1_Click(object sender, EventArgs e)
- {
- OpenFileDialog ofd = new OpenFileDialog();
- ofd.Filter = fileFilter;
- if (ofd.ShowDialog() != DialogResult.OK) return;
- pictureBox1.Image = null;
- image_path = ofd.FileName;
- pictureBox1.Image = new Bitmap(image_path);
- textBox1.Text = "";
- image = new Mat(image_path);
- pictureBox2.Image = null;
- }
-
- unsafe private void button2_Click(object sender, EventArgs e)
- {
- if (image_path == "")
- {
- return;
- }
-
- button2.Enabled = false;
- pictureBox2.Image = null;
- textBox1.Text = "";
- Application.DoEvents();
-
- //读图片
- image = new Mat(image_path);
-
- Mat dstimg = new Mat();
-
- Cv2.Resize(image, dstimg, new OpenCvSharp.Size(inpWidth, inpHeight));
-
- dstimg.ConvertTo(dstimg, MatType.CV_32FC3, 1 / 127.5, -1.0);
-
- float* pdata = (float*)dstimg.Data;
- float[] input_tensor_data = new float[1 * 3 * inpWidth * inpHeight];
- for (int i = 0; i < 1 * 3 * inpWidth * inpHeight; i++)
- {
- input_tensor_data[i] = pdata[i];
- }
-
- //输入Tensor
- input_tensor = new DenseTensor<float>(input_tensor_data, new[] { 1, inpHeight, inpWidth, 3 });
-
- //将 input_tensor 放入一个输入参数的容器,并指定名称
- input_container.Add(NamedOnnxValue.CreateFromTensor("input_1", input_tensor));
-
- dt1 = DateTime.Now;
- //运行 Inference 并获取结果
- result_infer = onnx_session.Run(input_container);
- dt2 = DateTime.Now;
-
- // 将输出结果转为DisposableNamedOnnxValue数组
- results_onnxvalue = result_infer.ToArray();
-
- // 读取第一个节点输出并转为Tensor数据
- result_tensors = results_onnxvalue[0].AsTensor<float>();
-
- var result_array = result_tensors.ToArray();
-
- for (int i = 0; i < result_array.Length; i++)
- {
- result_array[i] = (result_array[i] + 1.0f) * 127.5f;
- }
-
- Mat result_image = new Mat(inpHeight, inpWidth, MatType.CV_32FC3, result_array);
-
- result_image.ConvertTo(result_image, MatType.CV_8UC3);
-
- pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
- textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
- button2.Enabled = true;
-
- }
-
- private void Form1_Load(object sender, EventArgs e)
- {
- startupPath = System.Windows.Forms.Application.StartupPath;
- model_path = "model/lyt_net_lolv2_real_320x240.onnx";
-
- // 创建输出会话,用于输出模型读取信息
- options = new SessionOptions();
- options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
- options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
-
- // 创建推理模型类,读取本地模型文件
- onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径
-
- // 创建输入容器
- input_container = new List<NamedOnnxValue>();
-
- image_path = "test_img/1_1.JPG";
- pictureBox1.Image = new Bitmap(image_path);
- image = new Mat(image_path);
-
- inpHeight = 240;
- inpWidth = 320;
-
- }
-
- private void pictureBox1_DoubleClick(object sender, EventArgs e)
- {
- Common.ShowNormalImg(pictureBox1.Image);
- }
-
- private void pictureBox2_DoubleClick(object sender, EventArgs e)
- {
- Common.ShowNormalImg(pictureBox2.Image);
- }
-
- SaveFileDialog sdf = new SaveFileDialog();
- private void button3_Click(object sender, EventArgs e)
- {
- if (pictureBox2.Image == null)
- {
- return;
- }
- Bitmap output = new Bitmap(pictureBox2.Image);
- sdf.Title = "保存";
- sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";
- if (sdf.ShowDialog() == DialogResult.OK)
- {
- switch (sdf.FilterIndex)
- {
- case 1:
- {
- output.Save(sdf.FileName, ImageFormat.Jpeg);
- break;
- }
- case 2:
- {
- output.Save(sdf.FileName, ImageFormat.Png);
- break;
- }
- case 3:
- {
- output.Save(sdf.FileName, ImageFormat.Bmp);
- break;
- }
- case 4:
- {
- output.Save(sdf.FileName, ImageFormat.Emf);
- break;
- }
- case 5:
- {
- output.Save(sdf.FileName, ImageFormat.Exif);
- break;
- }
- case 6:
- {
- output.Save(sdf.FileName, ImageFormat.Gif);
- break;
- }
- case 7:
- {
- output.Save(sdf.FileName, ImageFormat.Icon);
- break;
- }
-
- case 8:
- {
- output.Save(sdf.FileName, ImageFormat.Tiff);
- break;
- }
- case 9:
- {
- output.Save(sdf.FileName, ImageFormat.Wmf);
- break;
- }
- }
- MessageBox.Show("保存成功,位置:" + sdf.FileName);
- }
- }
- }
- }
下载


评论记录:
回复评论: