C# Onnx yolov8m table extraction
目录
效果
模型信息
Model Properties
-------------------------
author:Ultralytics
version:8.1.29
task:detect
license:AGPL-3.0 License (https://ultralytics.com/license)
docs:https://docs.ultralytics.com
stride:32
batch:1
imgsz:[640, 640]
names:{0: 'bordered', 1: 'borderless'}
---------------------------------------------------------------
Inputs
-------------------------
name:images
tensor:Float[1, 3, 640, 640]
---------------------------------------------------------------
Outputs
-------------------------
name:output0
tensor:Float[1, 6, 8400]
---------------------------------------------------------------
项目
代码
using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.IO;
using System.Linq;
using System.Text;
using System.Windows.Forms;
namespace Onnx_Yolov8_Demo
{
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
}
string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
string image_path = "";
string model_path;
string classer_path;
public string[] class_names;
public int class_num;
DateTime dt1 = DateTime.Now;
DateTime dt2 = DateTime.Now;
int input_height;
int input_width;
float ratio_height;
float ratio_width;
InferenceSession onnx_session;
int box_num;
float conf_threshold;
float nms_threshold;
///
/// 选择图片
///
///
///
private void button1_Click(object sender, EventArgs e)
{
OpenFileDialog ofd = new OpenFileDialog();
ofd.Filter = fileFilter;
if (ofd.ShowDialog() != DialogResult.OK) return;
pictureBox1.Image = null;
image_path = ofd.FileName;
pictureBox1.Image = new Bitmap(image_path);
textBox1.Text = "";
pictureBox2.Image = null;
}
///
/// 推理
///
///
///
private void button2_Click(object sender, EventArgs e)
{
if (image_path == "")
{
return;
}
button2.Enabled = false;
pictureBox2.Image = null;
textBox1.Text = "";
Application.DoEvents();
Mat image = new Mat(image_path);
//图片缩放
int height = image.Rows;
int width = image.Cols;
Mat temp_image = image.Clone();
if (height > input_height || width > input_width)
{
float scale = Math.Min((float)input_height / height, (float)input_width / width);
OpenCvSharp.Size new_size = new OpenCvSharp.Size((int)(width * scale), (int)(height * scale));
Cv2.Resize(image, temp_image, new_size);
}
ratio_height = (float)height / temp_image.Rows;
ratio_width = (float)width / temp_image.Cols;
Mat input_img = new Mat();
Cv2.CopyMakeBorder(temp_image, input_img, 0, input_height - temp_image.Rows, 0, input_width - temp_image.Cols, BorderTypes.Constant, 0);
//Cv2.ImShow("input_img", input_img);
//输入Tensor
Tensor
for (int y = 0; y < input_img.Height; y++)
{
for (int x = 0; x < input_img.Width; x++)
{
input_tensor[0, 0, y, x] = input_img.At
input_tensor[0, 1, y, x] = input_img.At
input_tensor[0, 2, y, x] = input_img.At
}
}
List
{
NamedOnnxValue.CreateFromTensor("images", input_tensor)
};
//推理
dt1 = DateTime.Now;
var ort_outputs = onnx_session.Run(input_container).ToArray();
dt2 = DateTime.Now;
float[] data = Transpose(ort_outputs[0].AsTensor
float[] confidenceInfo = new float[class_num];
float[] rectData = new float[4];
List
for (int i = 0; i < box_num; i++)
{
Array.Copy(data, i * (class_num + 4), rectData, 0, 4);
Array.Copy(data, i * (class_num + 4) + 4, confidenceInfo, 0, class_num);
float score = confidenceInfo.Max(); // 获取最大值
int maxIndex = Array.IndexOf(confidenceInfo, score); // 获取最大值的位置
int _centerX = (int)(rectData[0] * ratio_width);
int _centerY = (int)(rectData[1] * ratio_height);
int _width = (int)(rectData[2] * ratio_width);
int _height = (int)(rectData[3] * ratio_height);
detResults.Add(new DetectionResult(
maxIndex,
class_names[maxIndex],
new Rect(_centerX - _width / 2, _centerY - _height / 2, _width, _height),
score));
}
//NMS
CvDnn.NMSBoxes(detResults.Select(x => x.Rect), detResults.Select(x => x.Confidence), conf_threshold, nms_threshold, out int[] indices);
detResults = detResults.Where((x, index) => indices.Contains(index)).ToList();
//绘制结果
Mat result_image = image.Clone();
foreach (DetectionResult r in detResults)
{
Cv2.PutText(result_image, $"{r.Class}:{r.Confidence:P0}", new OpenCvSharp.Point(r.Rect.TopLeft.X, r.Rect.TopLeft.Y - 10), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
Cv2.Rectangle(result_image, r.Rect, Scalar.Red, thickness: 2);
}
pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
button2.Enabled = true;
}
///
///窗体加载
///
///
///
private void Form1_Load(object sender, EventArgs e)
{
model_path = "model/yolov8m-table-extraction.onnx";
//创建输出会话,用于输出模型读取信息
SessionOptions options = new SessionOptions();
options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
// 创建推理模型类,读取模型文件
onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径
input_height = 640;
input_width = 640;
box_num = 8400;
conf_threshold = 0.25f;
nms_threshold = 0.5f;
classer_path = "model/lable.txt";
class_names = File.ReadAllLines(classer_path, Encoding.UTF8);
class_num = class_names.Length;
image_path = "test_img/1.jpg";
pictureBox1.Image = new Bitmap(image_path);
this.Text = "C# Onnx yolov8m-table-extraction";
}
///
/// 保存
///
///
///
private void button3_Click(object sender, EventArgs e)
{
if (pictureBox2.Image == null)
{
return;
}
Bitmap output = new Bitmap(pictureBox2.Image);
SaveFileDialog sdf = new SaveFileDialog();
sdf.Title = "保存";
sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";
if (sdf.ShowDialog() == DialogResult.OK)
{
switch (sdf.FilterIndex)
{
case 1:
{
output.Save(sdf.FileName, ImageFormat.Jpeg);
break;
}
case 2:
{
output.Save(sdf.FileName, ImageFormat.Png);
break;
}
case 3:
{
output.Save(sdf.FileName, ImageFormat.Bmp);
break;
}
case 4:
{
output.Save(sdf.FileName, ImageFormat.Emf);
break;
}
case 5:
{
output.Save(sdf.FileName, ImageFormat.Exif);
break;
}
case 6:
{
output.Save(sdf.FileName, ImageFormat.Gif);
break;
}
case 7:
{
output.Save(sdf.FileName, ImageFormat.Icon);
break;
}
case 8:
{
output.Save(sdf.FileName, ImageFormat.Tiff);
break;
}
case 9:
{
output.Save(sdf.FileName, ImageFormat.Wmf);
break;
}
}
MessageBox.Show("保存成功,位置:" + sdf.FileName);
}
}
private void pictureBox1_DoubleClick(object sender, EventArgs e)
{
ShowNormalImg(pictureBox1.Image);
}
private void pictureBox2_DoubleClick(object sender, EventArgs e)
{
ShowNormalImg(pictureBox2.Image);
}
public void ShowNormalImg(Image img)
{
if (img == null) return;
frmShow frm = new frmShow();
frm.Width = Screen.PrimaryScreen.Bounds.Width;
frm.Height = Screen.PrimaryScreen.Bounds.Height;
if (frm.Width > img.Width)
{
frm.Width = img.Width;
}
if (frm.Height > img.Height)
{
frm.Height = img.Height;
}
bool b = frm.richTextBox1.ReadOnly;
Clipboard.SetDataObject(img, true);
frm.richTextBox1.ReadOnly = false;
frm.richTextBox1.Paste(DataFormats.GetFormat(DataFormats.Bitmap));
frm.richTextBox1.ReadOnly = b;
frm.ShowDialog();
}
public unsafe float[] Transpose(float[] tensorData, int rows, int cols)
{
float[] transposedTensorData = new float[tensorData.Length];
fixed (float* pTensorData = tensorData)
{
fixed (float* pTransposedData = transposedTensorData)
{
for (int i = 0; i < rows; i++)
{
for (int j = 0; j < cols; j++)
{
int index = i * cols + j;
int transposedIndex = j * rows + i;
pTransposedData[transposedIndex] = pTensorData[index];
}
}
}
}
return transposedTensorData;
}
}
public class DetectionResult
{
public DetectionResult(int ClassId, string Class, Rect Rect, float Confidence)
{
this.ClassId = ClassId;
this.Confidence = Confidence;
this.Rect = Rect;
this.Class = Class;
}
public string Class { get; set; }
public int ClassId { get; set; }
public float Confidence { get; set; }
public Rect Rect { get; set; }
}
}
- using Microsoft.ML.OnnxRuntime;
- using Microsoft.ML.OnnxRuntime.Tensors;
- using OpenCvSharp;
- using OpenCvSharp.Dnn;
- using System;
- using System.Collections.Generic;
- using System.Drawing;
- using System.Drawing.Imaging;
- using System.IO;
- using System.Linq;
- using System.Text;
- using System.Windows.Forms;
-
- namespace Onnx_Yolov8_Demo
- {
- public partial class Form1 : Form
- {
- public Form1()
- {
- InitializeComponent();
- }
-
- string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
- string image_path = "";
- string model_path;
- string classer_path;
- public string[] class_names;
- public int class_num;
-
- DateTime dt1 = DateTime.Now;
- DateTime dt2 = DateTime.Now;
-
- int input_height;
- int input_width;
- float ratio_height;
- float ratio_width;
-
- InferenceSession onnx_session;
-
- int box_num;
- float conf_threshold;
- float nms_threshold;
-
- /// <summary>
- /// 选择图片
- /// </summary>
- /// <param name="sender"></param>
- /// <param name="e"></param>
- private void button1_Click(object sender, EventArgs e)
- {
- OpenFileDialog ofd = new OpenFileDialog();
- ofd.Filter = fileFilter;
- if (ofd.ShowDialog() != DialogResult.OK) return;
-
- pictureBox1.Image = null;
-
- image_path = ofd.FileName;
- pictureBox1.Image = new Bitmap(image_path);
-
- textBox1.Text = "";
- pictureBox2.Image = null;
- }
-
- /// <summary>
- /// 推理
- /// </summary>
- /// <param name="sender"></param>
- /// <param name="e"></param>
- private void button2_Click(object sender, EventArgs e)
- {
- if (image_path == "")
- {
- return;
- }
-
- button2.Enabled = false;
- pictureBox2.Image = null;
- textBox1.Text = "";
- Application.DoEvents();
-
- Mat image = new Mat(image_path);
-
- //图片缩放
- int height = image.Rows;
- int width = image.Cols;
- Mat temp_image = image.Clone();
- if (height > input_height || width > input_width)
- {
- float scale = Math.Min((float)input_height / height, (float)input_width / width);
- OpenCvSharp.Size new_size = new OpenCvSharp.Size((int)(width * scale), (int)(height * scale));
- Cv2.Resize(image, temp_image, new_size);
- }
- ratio_height = (float)height / temp_image.Rows;
- ratio_width = (float)width / temp_image.Cols;
- Mat input_img = new Mat();
- Cv2.CopyMakeBorder(temp_image, input_img, 0, input_height - temp_image.Rows, 0, input_width - temp_image.Cols, BorderTypes.Constant, 0);
-
- //Cv2.ImShow("input_img", input_img);
-
- //输入Tensor
- Tensor<float> input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });
- for (int y = 0; y < input_img.Height; y++)
- {
- for (int x = 0; x < input_img.Width; x++)
- {
- input_tensor[0, 0, y, x] = input_img.At<Vec3b>(y, x)[0] / 255f;
- input_tensor[0, 1, y, x] = input_img.At<Vec3b>(y, x)[1] / 255f;
- input_tensor[0, 2, y, x] = input_img.At<Vec3b>(y, x)[2] / 255f;
- }
- }
-
- List<NamedOnnxValue> input_container = new List<NamedOnnxValue>
- {
- NamedOnnxValue.CreateFromTensor("images", input_tensor)
- };
-
- //推理
- dt1 = DateTime.Now;
- var ort_outputs = onnx_session.Run(input_container).ToArray();
- dt2 = DateTime.Now;
-
- float[] data = Transpose(ort_outputs[0].AsTensor<float>().ToArray(), 4 + class_num, box_num);
-
- float[] confidenceInfo = new float[class_num];
- float[] rectData = new float[4];
-
- List<DetectionResult> detResults = new List<DetectionResult>();
-
- for (int i = 0; i < box_num; i++)
- {
- Array.Copy(data, i * (class_num + 4), rectData, 0, 4);
- Array.Copy(data, i * (class_num + 4) + 4, confidenceInfo, 0, class_num);
-
- float score = confidenceInfo.Max(); // 获取最大值
-
- int maxIndex = Array.IndexOf(confidenceInfo, score); // 获取最大值的位置
-
- int _centerX = (int)(rectData[0] * ratio_width);
- int _centerY = (int)(rectData[1] * ratio_height);
- int _width = (int)(rectData[2] * ratio_width);
- int _height = (int)(rectData[3] * ratio_height);
-
- detResults.Add(new DetectionResult(
- maxIndex,
- class_names[maxIndex],
- new Rect(_centerX - _width / 2, _centerY - _height / 2, _width, _height),
- score));
- }
-
- //NMS
- CvDnn.NMSBoxes(detResults.Select(x => x.Rect), detResults.Select(x => x.Confidence), conf_threshold, nms_threshold, out int[] indices);
- detResults = detResults.Where((x, index) => indices.Contains(index)).ToList();
-
- //绘制结果
- Mat result_image = image.Clone();
- foreach (DetectionResult r in detResults)
- {
- Cv2.PutText(result_image, $"{r.Class}:{r.Confidence:P0}", new OpenCvSharp.Point(r.Rect.TopLeft.X, r.Rect.TopLeft.Y - 10), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
- Cv2.Rectangle(result_image, r.Rect, Scalar.Red, thickness: 2);
- }
-
- pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
- textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
-
- button2.Enabled = true;
- }
-
- /// <summary>
- ///窗体加载
- /// </summary>
- /// <param name="sender"></param>
- /// <param name="e"></param>
- private void Form1_Load(object sender, EventArgs e)
- {
- model_path = "model/yolov8m-table-extraction.onnx";
-
- //创建输出会话,用于输出模型读取信息
- SessionOptions options = new SessionOptions();
- options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
- options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
-
- // 创建推理模型类,读取模型文件
- onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径
-
- input_height = 640;
- input_width = 640;
-
- box_num = 8400;
- conf_threshold = 0.25f;
- nms_threshold = 0.5f;
-
- classer_path = "model/lable.txt";
- class_names = File.ReadAllLines(classer_path, Encoding.UTF8);
- class_num = class_names.Length;
-
- image_path = "test_img/1.jpg";
- pictureBox1.Image = new Bitmap(image_path);
-
- this.Text = "C# Onnx yolov8m-table-extraction";
-
- }
-
- /// <summary>
- /// 保存
- /// </summary>
- /// <param name="sender"></param>
- /// <param name="e"></param>
- private void button3_Click(object sender, EventArgs e)
- {
- if (pictureBox2.Image == null)
- {
- return;
- }
- Bitmap output = new Bitmap(pictureBox2.Image);
- SaveFileDialog sdf = new SaveFileDialog();
- sdf.Title = "保存";
- sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";
- if (sdf.ShowDialog() == DialogResult.OK)
- {
- switch (sdf.FilterIndex)
- {
- case 1:
- {
- output.Save(sdf.FileName, ImageFormat.Jpeg);
- break;
- }
- case 2:
- {
- output.Save(sdf.FileName, ImageFormat.Png);
- break;
- }
- case 3:
- {
- output.Save(sdf.FileName, ImageFormat.Bmp);
- break;
- }
- case 4:
- {
- output.Save(sdf.FileName, ImageFormat.Emf);
- break;
- }
- case 5:
- {
- output.Save(sdf.FileName, ImageFormat.Exif);
- break;
- }
- case 6:
- {
- output.Save(sdf.FileName, ImageFormat.Gif);
- break;
- }
- case 7:
- {
- output.Save(sdf.FileName, ImageFormat.Icon);
- break;
- }
-
- case 8:
- {
- output.Save(sdf.FileName, ImageFormat.Tiff);
- break;
- }
- case 9:
- {
- output.Save(sdf.FileName, ImageFormat.Wmf);
- break;
- }
- }
- MessageBox.Show("保存成功,位置:" + sdf.FileName);
- }
- }
-
- private void pictureBox1_DoubleClick(object sender, EventArgs e)
- {
- ShowNormalImg(pictureBox1.Image);
- }
-
- private void pictureBox2_DoubleClick(object sender, EventArgs e)
- {
- ShowNormalImg(pictureBox2.Image);
- }
-
- public void ShowNormalImg(Image img)
- {
- if (img == null) return;
-
- frmShow frm = new frmShow();
-
- frm.Width = Screen.PrimaryScreen.Bounds.Width;
- frm.Height = Screen.PrimaryScreen.Bounds.Height;
-
- if (frm.Width > img.Width)
- {
- frm.Width = img.Width;
- }
-
- if (frm.Height > img.Height)
- {
- frm.Height = img.Height;
- }
-
- bool b = frm.richTextBox1.ReadOnly;
- Clipboard.SetDataObject(img, true);
- frm.richTextBox1.ReadOnly = false;
- frm.richTextBox1.Paste(DataFormats.GetFormat(DataFormats.Bitmap));
- frm.richTextBox1.ReadOnly = b;
-
- frm.ShowDialog();
-
- }
-
- public unsafe float[] Transpose(float[] tensorData, int rows, int cols)
- {
- float[] transposedTensorData = new float[tensorData.Length];
-
- fixed (float* pTensorData = tensorData)
- {
- fixed (float* pTransposedData = transposedTensorData)
- {
- for (int i = 0; i < rows; i++)
- {
- for (int j = 0; j < cols; j++)
- {
- int index = i * cols + j;
- int transposedIndex = j * rows + i;
- pTransposedData[transposedIndex] = pTensorData[index];
- }
- }
- }
- }
- return transposedTensorData;
- }
- }
-
- public class DetectionResult
- {
- public DetectionResult(int ClassId, string Class, Rect Rect, float Confidence)
- {
- this.ClassId = ClassId;
- this.Confidence = Confidence;
- this.Rect = Rect;
- this.Class = Class;
- }
-
- public string Class { get; set; }
-
- public int ClassId { get; set; }
-
- public float Confidence { get; set; }
-
- public Rect Rect { get; set; }
-
- }
-
- }
下载


评论记录:
回复评论: