C# yolov8 TensorRT Demo
目录
效果
说明
环境
NVIDIA GeForce RTX 4060 Laptop GPU
cuda12.1+cudnn 8.8.1+TensorRT-8.6.1.6
版本和我不一致的需要重新编译TensorRtExtern.dll,TensorRtExtern源码地址:https://github.com/guojin-yan/TensorRT-CSharp-API/tree/TensorRtSharp2.0/src/TensorRtExtern
Windows版 CUDA安装参考:http://iyenn.com/rec/1661921.html
项目
代码
Form2.cs
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Drawing;
using System.IO;
using System.Threading;
using System.Windows.Forms;
using TensorRtSharp.Custom;
namespace yolov8_TensorRT_Demo
{
public partial class Form2 : Form
{
public Form2()
{
InitializeComponent();
}
string imgFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
YoloV8 yoloV8;
Mat image;
string image_path = "";
string model_path;
string video_path = "";
string videoFilter = "*.mp4|*.mp4;";
VideoCapture vcapture;
VideoWriter vwriter;
bool saveDetVideo = false;
///
/// 单图推理
///
///
///
private void button2_Click(object sender, EventArgs e)
{
if (image_path == "")
{
return;
}
button2.Enabled = false;
pictureBox2.Image = null;
textBox1.Text = "";
Application.DoEvents();
image = new Mat(image_path);
List
//绘制结果
Mat result_image = image.Clone();
foreach (DetectionResult r in detResults)
{
Cv2.PutText(result_image, $"{r.Class}:{r.Confidence:P0}", new OpenCvSharp.Point(r.Rect.TopLeft.X, r.Rect.TopLeft.Y - 10), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
Cv2.Rectangle(result_image, r.Rect, Scalar.Red, thickness: 2);
}
if (pictureBox2.Image != null)
{
pictureBox2.Image.Dispose();
}
pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
textBox1.Text = yoloV8.DetectTime();
button2.Enabled = true;
}
///
/// 窗体加载,初始化
///
///
///
private void Form1_Load(object sender, EventArgs e)
{
image_path = "test/zidane.jpg";
pictureBox1.Image = new Bitmap(image_path);
model_path = "model/yolov8n.engine";
if (!File.Exists(model_path))
{
//有点耗时,需等待
Nvinfer.OnnxToEngine("model/yolov8n.onnx", 20);
}
yoloV8 = new YoloV8(model_path, "model/lable.txt");
}
///
/// 选择图片
///
///
///
private void button1_Click_1(object sender, EventArgs e)
{
OpenFileDialog ofd = new OpenFileDialog();
ofd.Filter = imgFilter;
if (ofd.ShowDialog() != DialogResult.OK) return;
pictureBox1.Image = null;
image_path = ofd.FileName;
pictureBox1.Image = new Bitmap(image_path);
textBox1.Text = "";
pictureBox2.Image = null;
}
///
/// 选择视频
///
///
///
private void button4_Click(object sender, EventArgs e)
{
OpenFileDialog ofd = new OpenFileDialog();
ofd.Filter = videoFilter;
ofd.InitialDirectory = Application.StartupPath + "\\test";
if (ofd.ShowDialog() != DialogResult.OK) return;
video_path = ofd.FileName;
button3_Click(null, null);
}
///
/// 视频推理
///
///
///
private void button3_Click(object sender, EventArgs e)
{
if (video_path == null)
{
return;
}
textBox1.Text = "开始检测";
Application.DoEvents();
Thread thread = new Thread(new ThreadStart(VideoDetection));
thread.Start();
thread.Join();
textBox1.Text = "检测完成!";
}
void VideoDetection()
{
vcapture = new VideoCapture(video_path);
if (!vcapture.IsOpened())
{
MessageBox.Show("打开视频文件失败");
return;
}
Mat frame = new Mat();
List
// 获取视频的fps
double videoFps = vcapture.Get(VideoCaptureProperties.Fps);
// 计算等待时间(毫秒)
int delay = (int)(1000 / videoFps);
Stopwatch _stopwatch = new Stopwatch();
if (checkBox1.Checked)
{
vwriter = new VideoWriter("out.mp4", FourCC.X264, vcapture.Fps, new OpenCvSharp.Size(vcapture.FrameWidth, vcapture.FrameHeight));
saveDetVideo = true;
}
else {
saveDetVideo = false;
}
while (vcapture.Read(frame))
{
if (frame.Empty())
{
MessageBox.Show("读取失败");
return;
}
_stopwatch.Restart();
delay = (int)(1000 / videoFps);
detResults = yoloV8.Detect(frame);
//绘制结果
foreach (DetectionResult r in detResults)
{
Cv2.PutText(frame, $"{r.Class}:{r.Confidence:P0}", new OpenCvSharp.Point(r.Rect.TopLeft.X, r.Rect.TopLeft.Y - 10), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
Cv2.Rectangle(frame, r.Rect, Scalar.Red, thickness: 2);
}
Cv2.PutText(frame, "preprocessTime:" + yoloV8.preprocessTime.ToString("F2")+"ms", new OpenCvSharp.Point(10, 30), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
Cv2.PutText(frame, "inferTime:" + yoloV8.inferTime.ToString("F2") + "ms", new OpenCvSharp.Point(10, 70), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
Cv2.PutText(frame, "postprocessTime:" + yoloV8.postprocessTime.ToString("F2") + "ms", new OpenCvSharp.Point(10, 110), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
Cv2.PutText(frame, "totalTime:" + yoloV8.totalTime.ToString("F2") + "ms", new OpenCvSharp.Point(10, 150), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
Cv2.PutText(frame, "video fps:" + videoFps.ToString("F2"), new OpenCvSharp.Point(10, 190), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
Cv2.PutText(frame, "det fps:" + yoloV8.detFps.ToString("F2"), new OpenCvSharp.Point(10, 230), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
if (saveDetVideo)
{
vwriter.Write(frame);
}
Cv2.ImShow("DetectionResult", frame);
// for test
// delay = 1;
delay = (int)(delay - _stopwatch.ElapsedMilliseconds);
if (delay <= 0)
{
delay = 1;
}
//Console.WriteLine("delay:" + delay.ToString()) ;
if (Cv2.WaitKey(delay) == 27)
{
break; // 如果按下ESC,退出循环
}
}
Cv2.DestroyAllWindows();
vcapture.Release();
if (saveDetVideo)
{
vwriter.Release();
}
}
}
}
- using OpenCvSharp;
- using System;
- using System.Collections.Generic;
- using System.Diagnostics;
- using System.Drawing;
- using System.IO;
- using System.Threading;
- using System.Windows.Forms;
- using TensorRtSharp.Custom;
-
- namespace yolov8_TensorRT_Demo
- {
- public partial class Form2 : Form
- {
- public Form2()
- {
- InitializeComponent();
- }
-
- string imgFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
-
- YoloV8 yoloV8;
- Mat image;
-
- string image_path = "";
- string model_path;
-
- string video_path = "";
- string videoFilter = "*.mp4|*.mp4;";
- VideoCapture vcapture;
- VideoWriter vwriter;
- bool saveDetVideo = false;
-
-
- /// <summary>
- /// 单图推理
- /// </summary>
- /// <param name="sender"></param>
- /// <param name="e"></param>
- private void button2_Click(object sender, EventArgs e)
- {
-
- if (image_path == "")
- {
- return;
- }
-
- button2.Enabled = false;
- pictureBox2.Image = null;
- textBox1.Text = "";
-
- Application.DoEvents();
-
- image = new Mat(image_path);
-
- List<DetectionResult> detResults = yoloV8.Detect(image);
-
- //绘制结果
- Mat result_image = image.Clone();
- foreach (DetectionResult r in detResults)
- {
- Cv2.PutText(result_image, $"{r.Class}:{r.Confidence:P0}", new OpenCvSharp.Point(r.Rect.TopLeft.X, r.Rect.TopLeft.Y - 10), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
- Cv2.Rectangle(result_image, r.Rect, Scalar.Red, thickness: 2);
- }
-
- if (pictureBox2.Image != null)
- {
- pictureBox2.Image.Dispose();
- }
- pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
- textBox1.Text = yoloV8.DetectTime();
-
- button2.Enabled = true;
-
- }
-
- /// <summary>
- /// 窗体加载,初始化
- /// </summary>
- /// <param name="sender"></param>
- /// <param name="e"></param>
- private void Form1_Load(object sender, EventArgs e)
- {
- image_path = "test/zidane.jpg";
- pictureBox1.Image = new Bitmap(image_path);
-
- model_path = "model/yolov8n.engine";
-
- if (!File.Exists(model_path))
- {
- //有点耗时,需等待
- Nvinfer.OnnxToEngine("model/yolov8n.onnx", 20);
- }
-
- yoloV8 = new YoloV8(model_path, "model/lable.txt");
-
- }
-
- /// <summary>
- /// 选择图片
- /// </summary>
- /// <param name="sender"></param>
- /// <param name="e"></param>
- private void button1_Click_1(object sender, EventArgs e)
- {
- OpenFileDialog ofd = new OpenFileDialog();
- ofd.Filter = imgFilter;
- if (ofd.ShowDialog() != DialogResult.OK) return;
-
- pictureBox1.Image = null;
-
- image_path = ofd.FileName;
- pictureBox1.Image = new Bitmap(image_path);
-
- textBox1.Text = "";
- pictureBox2.Image = null;
- }
-
- /// <summary>
- /// 选择视频
- /// </summary>
- /// <param name="sender"></param>
- /// <param name="e"></param>
- private void button4_Click(object sender, EventArgs e)
- {
- OpenFileDialog ofd = new OpenFileDialog();
- ofd.Filter = videoFilter;
- ofd.InitialDirectory = Application.StartupPath + "\\test";
-
- if (ofd.ShowDialog() != DialogResult.OK) return;
-
- video_path = ofd.FileName;
-
- button3_Click(null, null);
-
- }
-
- /// <summary>
- /// 视频推理
- /// </summary>
- /// <param name="sender"></param>
- /// <param name="e"></param>
- private void button3_Click(object sender, EventArgs e)
- {
- if (video_path == null)
- {
- return;
- }
-
- textBox1.Text = "开始检测";
-
- Application.DoEvents();
-
- Thread thread = new Thread(new ThreadStart(VideoDetection));
-
- thread.Start();
- thread.Join();
-
- textBox1.Text = "检测完成!";
- }
-
- void VideoDetection()
- {
- vcapture = new VideoCapture(video_path);
- if (!vcapture.IsOpened())
- {
- MessageBox.Show("打开视频文件失败");
- return;
- }
-
- Mat frame = new Mat();
- List<DetectionResult> detResults;
-
- // 获取视频的fps
- double videoFps = vcapture.Get(VideoCaptureProperties.Fps);
- // 计算等待时间(毫秒)
- int delay = (int)(1000 / videoFps);
- Stopwatch _stopwatch = new Stopwatch();
-
- if (checkBox1.Checked)
- {
- vwriter = new VideoWriter("out.mp4", FourCC.X264, vcapture.Fps, new OpenCvSharp.Size(vcapture.FrameWidth, vcapture.FrameHeight));
- saveDetVideo = true;
- }
- else {
- saveDetVideo = false;
- }
-
- while (vcapture.Read(frame))
- {
- if (frame.Empty())
- {
- MessageBox.Show("读取失败");
- return;
- }
-
- _stopwatch.Restart();
-
- delay = (int)(1000 / videoFps);
-
- detResults = yoloV8.Detect(frame);
-
- //绘制结果
- foreach (DetectionResult r in detResults)
- {
- Cv2.PutText(frame, $"{r.Class}:{r.Confidence:P0}", new OpenCvSharp.Point(r.Rect.TopLeft.X, r.Rect.TopLeft.Y - 10), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
- Cv2.Rectangle(frame, r.Rect, Scalar.Red, thickness: 2);
- }
- Cv2.PutText(frame, "preprocessTime:" + yoloV8.preprocessTime.ToString("F2")+"ms", new OpenCvSharp.Point(10, 30), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
- Cv2.PutText(frame, "inferTime:" + yoloV8.inferTime.ToString("F2") + "ms", new OpenCvSharp.Point(10, 70), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
- Cv2.PutText(frame, "postprocessTime:" + yoloV8.postprocessTime.ToString("F2") + "ms", new OpenCvSharp.Point(10, 110), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
- Cv2.PutText(frame, "totalTime:" + yoloV8.totalTime.ToString("F2") + "ms", new OpenCvSharp.Point(10, 150), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
- Cv2.PutText(frame, "video fps:" + videoFps.ToString("F2"), new OpenCvSharp.Point(10, 190), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
- Cv2.PutText(frame, "det fps:" + yoloV8.detFps.ToString("F2"), new OpenCvSharp.Point(10, 230), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
-
- if (saveDetVideo)
- {
- vwriter.Write(frame);
- }
-
- Cv2.ImShow("DetectionResult", frame);
-
- // for test
- // delay = 1;
-
- delay = (int)(delay - _stopwatch.ElapsedMilliseconds);
- if (delay <= 0)
- {
- delay = 1;
- }
- //Console.WriteLine("delay:" + delay.ToString()) ;
- if (Cv2.WaitKey(delay) == 27)
- {
- break; // 如果按下ESC,退出循环
- }
- }
-
- Cv2.DestroyAllWindows();
- vcapture.Release();
- if (saveDetVideo)
- {
- vwriter.Release();
- }
-
- }
- }
-
- }
YoloV8.cs
- using OpenCvSharp;
- using OpenCvSharp.Dnn;
- using System;
- using System.Collections.Generic;
- using System.Diagnostics;
- using System.IO;
- using System.Linq;
- using System.Text;
- using TensorRtSharp.Custom;
-
- namespace yolov8_TensorRT_Demo
- {
- public class YoloV8
- {
-
- float[] input_tensor_data;
- float[] outputData;
- List<DetectionResult> detectionResults;
-
- int input_height;
- int input_width;
-
- Nvinfer predictor;
-
- string[] class_names;
- int class_num;
- int box_num;
-
- float conf_threshold;
- float nms_threshold;
-
- float ratio_height;
- float ratio_width;
-
- public double preprocessTime;
- public double inferTime;
- public double postprocessTime;
- public double totalTime;
- public double detFps;
-
- public String DetectTime()
- {
- StringBuilder stringBuilder = new StringBuilder();
- stringBuilder.AppendLine($"Preprocess: {preprocessTime:F2}ms");
- stringBuilder.AppendLine($"Infer: {inferTime:F2}ms");
- stringBuilder.AppendLine($"Postprocess: {postprocessTime:F2}ms");
- stringBuilder.AppendLine($"Total: {totalTime:F2}ms");
-
- return stringBuilder.ToString();
- }
-
- public YoloV8(string model_path, string classer_path)
- {
- predictor = new Nvinfer(model_path);
-
- class_names = File.ReadAllLines(classer_path, Encoding.UTF8);
- class_num = class_names.Length;
-
- input_height = 640;
- input_width = 640;
-
- box_num = 8400;
-
- conf_threshold = 0.25f;
- nms_threshold = 0.5f;
-
- detectionResults = new List<DetectionResult>();
- }
-
- void Preprocess(Mat image)
- {
- //图片缩放
- int height = image.Rows;
- int width = image.Cols;
- Mat temp_image = image.Clone();
- if (height > input_height || width > input_width)
- {
- float scale = Math.Min((float)input_height / height, (float)input_width / width);
- OpenCvSharp.Size new_size = new OpenCvSharp.Size((int)(width * scale), (int)(height * scale));
- Cv2.Resize(image, temp_image, new_size);
- }
- ratio_height = (float)height / temp_image.Rows;
- ratio_width = (float)width / temp_image.Cols;
- Mat input_img = new Mat();
- Cv2.CopyMakeBorder(temp_image, input_img, 0, input_height - temp_image.Rows, 0, input_width - temp_image.Cols, BorderTypes.Constant, 0);
-
- //归一化
- input_img.ConvertTo(input_img, MatType.CV_32FC3, 1.0 / 255);
-
- input_tensor_data = Common.ExtractMat(input_img);
-
- input_img.Dispose();
- temp_image.Dispose();
- }
-
- void Postprocess(float[] outputData)
- {
- detectionResults.Clear();
-
- float[] data = Common.Transpose(outputData, class_num + 4, box_num);
-
- float[] confidenceInfo = new float[class_num];
- float[] rectData = new float[4];
-
- List<DetectionResult> detResults = new List<DetectionResult>();
-
- for (int i = 0; i < box_num; i++)
- {
- Array.Copy(data, i * (class_num + 4), rectData, 0, 4);
- Array.Copy(data, i * (class_num + 4) + 4, confidenceInfo, 0, class_num);
-
- float score = confidenceInfo.Max(); // 获取最大值
-
- int maxIndex = Array.IndexOf(confidenceInfo, score); // 获取最大值的位置
-
- int _centerX = (int)(rectData[0] * ratio_width);
- int _centerY = (int)(rectData[1] * ratio_height);
- int _width = (int)(rectData[2] * ratio_width);
- int _height = (int)(rectData[3] * ratio_height);
-
- detResults.Add(new DetectionResult(
- maxIndex,
- class_names[maxIndex],
- new Rect(_centerX - _width / 2, _centerY - _height / 2, _width, _height),
- score));
- }
-
- //NMS
- CvDnn.NMSBoxes(detResults.Select(x => x.Rect), detResults.Select(x => x.Confidence), conf_threshold, nms_threshold, out int[] indices);
- detResults = detResults.Where((x, index) => indices.Contains(index)).ToList();
-
- detectionResults = detResults;
- }
-
- internal List<DetectionResult> Detect(Mat image)
- {
-
- var t1 = Cv2.GetTickCount();
-
- Stopwatch stopwatch = new Stopwatch();
- stopwatch.Start();
-
- Preprocess(image);
-
- preprocessTime = stopwatch.Elapsed.TotalMilliseconds;
- stopwatch.Restart();
-
- predictor.LoadInferenceData("images", input_tensor_data);
-
- predictor.infer();
-
- inferTime = stopwatch.Elapsed.TotalMilliseconds;
- stopwatch.Restart();
-
- outputData = predictor.GetInferenceResult("output0");
-
- Postprocess(outputData);
-
- postprocessTime = stopwatch.Elapsed.TotalMilliseconds;
- stopwatch.Stop();
-
- totalTime = preprocessTime + inferTime + postprocessTime;
-
- detFps = (double)stopwatch.Elapsed.TotalSeconds / (double)stopwatch.Elapsed.Ticks;
-
- var t2 = Cv2.GetTickCount();
-
- detFps = 1 / ((t2 - t1) / Cv2.GetTickFrequency());
-
- return detectionResults;
-
- }
-
- }
- }
下载


评论记录:
回复评论: