首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

C# SwinV2 Stable Diffusion 提示词反推 Onnx Demo

  • 25-02-19 03:01
  • 2202
  • 12447
blog.csdn.net

目录

介绍

效果

CPU

GPU

模型信息

项目

代码

下载 


C# SwinV2 Stable Diffusion 提示词反推 Onnx Demo

介绍

模型出处github地址:https://github.com/SmilingWolf/SW-CV-ModelZoo

模型下载地址:https://huggingface.co/SmilingWolf/wd-v1-4-swinv2-tagger-v2

效果

CPU

GPU

模型信息

Model Properties
-------------------------
---------------------------------------------------------------

Inputs
-------------------------
name:input_1:0
tensor:Float[1, 448, 448, 3]
---------------------------------------------------------------

Outputs
-------------------------
name:predictions_sigmoid
tensor:Float[1, 9083]
---------------------------------------------------------------

项目

代码

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace Onnx_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        string model_path;
        Mat image;

        SessionOptions options;
        InferenceSession onnx_session;
        Tensor input_tensor;
        List input_container;
        IDisposableReadOnlyCollection result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;

        Tensor result_tensors;

        StringBuilder sb = new StringBuilder();

        public string[] class_names;

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            image = new Mat(image_path);
        }

        private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }

            button2.Enabled = false;
            textBox1.Text = "";
            sb.Clear();
            Application.DoEvents();

            //图片缩放
            image = new Mat(image_path);
            int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
            Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
            Rect roi = new Rect(0, 0, image.Cols, image.Rows);
            image.CopyTo(new Mat(max_image, roi));

            float[] result_array;

            // 将图片转为RGB通道
            Mat image_rgb = new Mat();
            Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);
            Mat resize_image = new Mat();
            Cv2.Resize(max_image, resize_image, new OpenCvSharp.Size(448, 448));

            // 输入Tensor
            for (int y = 0; y < resize_image.Height; y++)
            {
                for (int x = 0; x < resize_image.Width; x++)
                {
                    input_tensor[0, y, x, 0] = resize_image.At(y, x)[0];
                    input_tensor[0, y, x, 1] = resize_image.At(y, x)[1];
                    input_tensor[0, y, x, 2] = resize_image.At(y, x)[2];
                }
            }

            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_container.Add(NamedOnnxValue.CreateFromTensor("input_1:0", input_tensor));

            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_container);
            dt2 = DateTime.Now;

            // 将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();

            // 读取第一个节点输出并转为Tensor数据
            result_tensors = results_onnxvalue[0].AsTensor();

            result_array = result_tensors.ToArray();

            List ltResult = new List();
            ScoreIndex temp;
            for (int i = 0; i < result_array.Length; i++)
            {
                temp = new ScoreIndex(i, result_array[i]);
                ltResult.Add(temp);
            }

            //根据分数倒序排序,取前14个
            var SortedByScore = ltResult.OrderByDescending(p => p.Score).ToList().Take(14);

            foreach (var item in SortedByScore)
            {
                sb.Append(class_names[item.Index] + ",");
            }
            sb.Length--; // 将长度减1来移除最后一个字符

            sb.AppendLine("");
            sb.AppendLine("------------------");
            
            // 只取分数最高的
            // float max = result_array.Max();
            // int maxIndex = Array.IndexOf(result_array, max);
            // sb.AppendLine(class_names[maxIndex]+" "+ max.ToString("P2"));
           
            sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");
            textBox1.Text = sb.ToString();
            button2.Enabled = true;
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            model_path = "model/model.onnx";

            // 创建输出会话,用于输出模型读取信息
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行

            // 创建推理模型类,读取本地模型文件
            onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径

            // 输入Tensor
            input_tensor = new DenseTensor(new[] { 1, 448, 448, 3 });
            // 创建输入容器
            input_container = new List();

            image_path = "test_img/test.jpg";
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);

            List str = new List();
            StreamReader sr = new StreamReader("model/lable.txt");
            string line;
            while ((line = sr.ReadLine()) != null)
            {
                str.Add(line);
            }
            class_names = str.ToArray();
        }

    }
}

  1. using Microsoft.ML.OnnxRuntime;
  2. using Microsoft.ML.OnnxRuntime.Tensors;
  3. using OpenCvSharp;
  4. using System;
  5. using System.Collections.Generic;
  6. using System.Drawing;
  7. using System.IO;
  8. using System.Linq;
  9. using System.Text;
  10. using System.Windows.Forms;
  11. namespace Onnx_Demo
  12. {
  13. public partial class Form1 : Form
  14. {
  15. public Form1()
  16. {
  17. InitializeComponent();
  18. }
  19. string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
  20. string image_path = "";
  21. DateTime dt1 = DateTime.Now;
  22. DateTime dt2 = DateTime.Now;
  23. string model_path;
  24. Mat image;
  25. SessionOptions options;
  26. InferenceSession onnx_session;
  27. Tensor<float> input_tensor;
  28. List<NamedOnnxValue> input_container;
  29. IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
  30. DisposableNamedOnnxValue[] results_onnxvalue;
  31. Tensor<float> result_tensors;
  32. StringBuilder sb = new StringBuilder();
  33. public string[] class_names;
  34. private void button1_Click(object sender, EventArgs e)
  35. {
  36. OpenFileDialog ofd = new OpenFileDialog();
  37. ofd.Filter = fileFilter;
  38. if (ofd.ShowDialog() != DialogResult.OK) return;
  39. pictureBox1.Image = null;
  40. image_path = ofd.FileName;
  41. pictureBox1.Image = new Bitmap(image_path);
  42. textBox1.Text = "";
  43. image = new Mat(image_path);
  44. }
  45. private void button2_Click(object sender, EventArgs e)
  46. {
  47. if (image_path == "")
  48. {
  49. return;
  50. }
  51. button2.Enabled = false;
  52. textBox1.Text = "";
  53. sb.Clear();
  54. Application.DoEvents();
  55. //图片缩放
  56. image = new Mat(image_path);
  57. int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
  58. Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
  59. Rect roi = new Rect(0, 0, image.Cols, image.Rows);
  60. image.CopyTo(new Mat(max_image, roi));
  61. float[] result_array;
  62. // 将图片转为RGB通道
  63. Mat image_rgb = new Mat();
  64. Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);
  65. Mat resize_image = new Mat();
  66. Cv2.Resize(max_image, resize_image, new OpenCvSharp.Size(448, 448));
  67. // 输入Tensor
  68. for (int y = 0; y < resize_image.Height; y++)
  69. {
  70. for (int x = 0; x < resize_image.Width; x++)
  71. {
  72. input_tensor[0, y, x, 0] = resize_image.At<Vec3b>(y, x)[0];
  73. input_tensor[0, y, x, 1] = resize_image.At<Vec3b>(y, x)[1];
  74. input_tensor[0, y, x, 2] = resize_image.At<Vec3b>(y, x)[2];
  75. }
  76. }
  77. //将 input_tensor 放入一个输入参数的容器,并指定名称
  78. input_container.Add(NamedOnnxValue.CreateFromTensor("input_1:0", input_tensor));
  79. dt1 = DateTime.Now;
  80. //运行 Inference 并获取结果
  81. result_infer = onnx_session.Run(input_container);
  82. dt2 = DateTime.Now;
  83. // 将输出结果转为DisposableNamedOnnxValue数组
  84. results_onnxvalue = result_infer.ToArray();
  85. // 读取第一个节点输出并转为Tensor数据
  86. result_tensors = results_onnxvalue[0].AsTensor<float>();
  87. result_array = result_tensors.ToArray();
  88. List<ScoreIndex> ltResult = new List<ScoreIndex>();
  89. ScoreIndex temp;
  90. for (int i = 0; i < result_array.Length; i++)
  91. {
  92. temp = new ScoreIndex(i, result_array[i]);
  93. ltResult.Add(temp);
  94. }
  95. //根据分数倒序排序,取前14个
  96. var SortedByScore = ltResult.OrderByDescending(p => p.Score).ToList().Take(14);
  97. foreach (var item in SortedByScore)
  98. {
  99. sb.Append(class_names[item.Index] + ",");
  100. }
  101. sb.Length--; // 将长度减1来移除最后一个字符
  102. sb.AppendLine("");
  103. sb.AppendLine("------------------");
  104. // 只取分数最高的
  105. // float max = result_array.Max();
  106. // int maxIndex = Array.IndexOf(result_array, max);
  107. // sb.AppendLine(class_names[maxIndex]+" "+ max.ToString("P2"));
  108. sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");
  109. textBox1.Text = sb.ToString();
  110. button2.Enabled = true;
  111. }
  112. private void Form1_Load(object sender, EventArgs e)
  113. {
  114. model_path = "model/model.onnx";
  115. // 创建输出会话,用于输出模型读取信息
  116. options = new SessionOptions();
  117. options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
  118. options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
  119. // 创建推理模型类,读取本地模型文件
  120. onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径
  121. // 输入Tensor
  122. input_tensor = new DenseTensor<float>(new[] { 1, 448, 448, 3 });
  123. // 创建输入容器
  124. input_container = new List<NamedOnnxValue>();
  125. image_path = "test_img/test.jpg";
  126. pictureBox1.Image = new Bitmap(image_path);
  127. image = new Mat(image_path);
  128. List<string> str = new List<string>();
  129. StreamReader sr = new StreamReader("model/lable.txt");
  130. string line;
  131. while ((line = sr.ReadLine()) != null)
  132. {
  133. str.Add(line);
  134. }
  135. class_names = str.ToArray();
  136. }
  137. }
  138. }

下载 

源码下载

天天代码码天天
微信公众号
.NET 人工智能实践
注:本文转载自blog.csdn.net的天天代码码天天的文章"https://lw112190.blog.csdn.net/article/details/136511321"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2492) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top