目录
C# OpenVINO Crack Seg 裂缝分割 裂缝检测
效果
模型信息
Model Properties
-------------------------
date:2024-02-29T16:35:48.364242
author:Ultralytics
task:segment
version:8.1.18
stride:32
batch:1
imgsz:[640, 640]
names:{0: 'crack'}
---------------------------------------------------------------
Inputs
-------------------------
name:images
tensor:Float[1, 3, 640, 640]
---------------------------------------------------------------
Outputs
-------------------------
name:output0
tensor:Float[1, 37, 8400]
name:output1
tensor:Float[1, 32, 160, 160]
---------------------------------------------------------------
项目
代码
using OpenCvSharp;
using Sdcb.OpenVINO;
using Sdcb.OpenVINO.Natives;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Drawing;
using System.IO;
using System.Text;
using System.Windows.Forms;
namespace OpenVINO_Seg
{
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
}
string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
string image_path = "";
string startupPath;
string model_path;
string classer_path;
Mat src;
SegmentationResult result_pro;
Mat result_image;
Result seg_result;
StringBuilder sb = new StringBuilder();
float[] det_result_array = new float[8400 * 37];
float[] proto_result_array = new float[32 * 160 * 160];
// 识别结果类型
public string[] class_names;
private void button1_Click(object sender, EventArgs e)
{
OpenFileDialog ofd = new OpenFileDialog();
ofd.Filter = fileFilter;
if (ofd.ShowDialog() != DialogResult.OK) return;
pictureBox1.Image = null;
image_path = ofd.FileName;
pictureBox1.Image = new Bitmap(image_path);
textBox1.Text = "";
src = new Mat(image_path);
pictureBox2.Image = null;
}
unsafe private void button2_Click(object sender, EventArgs e)
{
if (pictureBox1.Image == null)
{
return;
}
pictureBox2.Image = null;
textBox1.Text = "";
sb.Clear();
src = new Mat(image_path);
Model rawModel = OVCore.Shared.ReadModel(model_path);
PrePostProcessor pp = rawModel.CreatePrePostProcessor();
PreProcessInputInfo inputInfo = pp.Inputs.Primary;
inputInfo.TensorInfo.Layout = Sdcb.OpenVINO.Layout.NHWC;
inputInfo.ModelInfo.Layout = Sdcb.OpenVINO.Layout.NCHW;
Model m = pp.BuildModel();
CompiledModel cm = OVCore.Shared.CompileModel(m, "CPU");
InferRequest ir = cm.CreateInferRequest();
Shape inputShape = m.Inputs[0].Shape;
float[] factors = new float[4];
factors[0] = 1f * src.Width / inputShape[2];
factors[1] = 1f * src.Height / inputShape[1];
factors[2] = src.Rows;
factors[3] = src.Cols;
result_pro = new SegmentationResult(class_names, factors,0.3f,0.5f);
Stopwatch stopwatch = new Stopwatch();
Mat resized = src.Resize(new OpenCvSharp.Size(inputShape[2], inputShape[1]));
Mat f32 = new Mat();
resized.ConvertTo(f32, MatType.CV_32FC3, 1.0 / 255);
using (Tensor input = Tensor.FromRaw(
new ReadOnlySpan
new Shape(1, f32.Rows, f32.Cols, 3),
ov_element_type_e.F32))
{
ir.Inputs.Primary = input;
}
double preprocessTime = stopwatch.Elapsed.TotalMilliseconds;
stopwatch.Restart();
ir.Run();
double inferTime = stopwatch.Elapsed.TotalMilliseconds;
stopwatch.Restart();
using (Tensor output_det = ir.Outputs[0])
using (Tensor output_proto = ir.Outputs[1])
{
det_result_array = output_det.GetData
proto_result_array = output_proto.GetData
seg_result = result_pro.process_result(det_result_array, proto_result_array);
double postprocessTime = stopwatch.Elapsed.TotalMilliseconds;
stopwatch.Stop();
double totalTime = preprocessTime + inferTime + postprocessTime;
result_image = src.Clone();
Mat masked_img = new Mat();
// 将识别结果绘制到图片上
for (int i = 0; i < seg_result.length; i++)
{
Cv2.Rectangle(result_image, seg_result.rects[i], new Scalar(0, 0, 255), 2, LineTypes.Link8);
Cv2.Rectangle(result_image, new OpenCvSharp.Point(seg_result.rects[i].TopLeft.X, seg_result.rects[i].TopLeft.Y - 20),
new OpenCvSharp.Point(seg_result.rects[i].BottomRight.X, seg_result.rects[i].TopLeft.Y), new Scalar(0, 255, 255), -1);
Cv2.PutText(result_image, seg_result.classes[i] + "-" + seg_result.scores[i].ToString("0.00"),
new OpenCvSharp.Point(seg_result.rects[i].X, seg_result.rects[i].Y - 5),
HersheyFonts.HersheySimplex, 0.6, new Scalar(0, 0, 0), 1);
Cv2.AddWeighted(result_image, 0.5, seg_result.masks[i], 0.5, 0, masked_img);
sb.AppendLine($"{seg_result.classes[i]}:{seg_result.scores[i]:P0}");
}
if (seg_result.length > 0)
{
if (pictureBox2.Image != null)
{
pictureBox2.Image.Dispose();
}
pictureBox2.Image = new Bitmap(masked_img.ToMemoryStream());
sb.AppendLine($"Preprocess: {preprocessTime:F2}ms");
sb.AppendLine($"Infer: {inferTime:F2}ms");
sb.AppendLine($"Postprocess: {postprocessTime:F2}ms");
sb.AppendLine($"Total: {totalTime:F2}ms");
textBox1.Text = sb.ToString();
}
else
{
textBox1.Text = "无信息";
}
masked_img.Dispose();
result_image.Dispose();
}
}
private void Form1_Load(object sender, EventArgs e)
{
image_path = "1.jpg";
pictureBox1.Image = new Bitmap(image_path);
startupPath = Application.StartupPath;
model_path = startupPath + "\\crack_m_best.onnx";
classer_path = startupPath + "\\lable.txt";
List
StreamReader sr = new StreamReader(classer_path);
string line;
while ((line = sr.ReadLine()) != null)
{
str.Add(line);
}
class_names = str.ToArray();
}
}
}
- using OpenCvSharp;
- using Sdcb.OpenVINO;
- using Sdcb.OpenVINO.Natives;
- using System;
- using System.Collections.Generic;
- using System.Diagnostics;
- using System.Drawing;
- using System.IO;
- using System.Text;
- using System.Windows.Forms;
-
- namespace OpenVINO_Seg
- {
- public partial class Form1 : Form
- {
- public Form1()
- {
- InitializeComponent();
- }
-
- string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
- string image_path = "";
- string startupPath;
- string model_path;
- string classer_path;
-
- Mat src;
-
- SegmentationResult result_pro;
- Mat result_image;
- Result seg_result;
-
- StringBuilder sb = new StringBuilder();
-
- float[] det_result_array = new float[8400 * 37];
- float[] proto_result_array = new float[32 * 160 * 160];
-
- // 识别结果类型
- public string[] class_names;
-
- private void button1_Click(object sender, EventArgs e)
- {
- OpenFileDialog ofd = new OpenFileDialog();
- ofd.Filter = fileFilter;
- if (ofd.ShowDialog() != DialogResult.OK) return;
- pictureBox1.Image = null;
- image_path = ofd.FileName;
- pictureBox1.Image = new Bitmap(image_path);
- textBox1.Text = "";
- src = new Mat(image_path);
- pictureBox2.Image = null;
- }
-
- unsafe private void button2_Click(object sender, EventArgs e)
- {
- if (pictureBox1.Image == null)
- {
- return;
- }
-
- pictureBox2.Image = null;
- textBox1.Text = "";
- sb.Clear();
-
- src = new Mat(image_path);
-
- Model rawModel = OVCore.Shared.ReadModel(model_path);
- PrePostProcessor pp = rawModel.CreatePrePostProcessor();
- PreProcessInputInfo inputInfo = pp.Inputs.Primary;
-
- inputInfo.TensorInfo.Layout = Sdcb.OpenVINO.Layout.NHWC;
- inputInfo.ModelInfo.Layout = Sdcb.OpenVINO.Layout.NCHW;
-
- Model m = pp.BuildModel();
- CompiledModel cm = OVCore.Shared.CompileModel(m, "CPU");
- InferRequest ir = cm.CreateInferRequest();
-
- Shape inputShape = m.Inputs[0].Shape;
-
- float[] factors = new float[4];
- factors[0] = 1f * src.Width / inputShape[2];
- factors[1] = 1f * src.Height / inputShape[1];
- factors[2] = src.Rows;
- factors[3] = src.Cols;
-
- result_pro = new SegmentationResult(class_names, factors,0.3f,0.5f);
-
- Stopwatch stopwatch = new Stopwatch();
- Mat resized = src.Resize(new OpenCvSharp.Size(inputShape[2], inputShape[1]));
- Mat f32 = new Mat();
- resized.ConvertTo(f32, MatType.CV_32FC3, 1.0 / 255);
-
- using (Tensor input = Tensor.FromRaw(
- new ReadOnlySpan<byte>((void*)f32.Data, (int)((long)f32.DataEnd - (long)f32.DataStart)),
- new Shape(1, f32.Rows, f32.Cols, 3),
- ov_element_type_e.F32))
- {
- ir.Inputs.Primary = input;
- }
- double preprocessTime = stopwatch.Elapsed.TotalMilliseconds;
- stopwatch.Restart();
-
- ir.Run();
- double inferTime = stopwatch.Elapsed.TotalMilliseconds;
- stopwatch.Restart();
-
- using (Tensor output_det = ir.Outputs[0])
- using (Tensor output_proto = ir.Outputs[1])
- {
- det_result_array = output_det.GetData<float>().ToArray();
- proto_result_array = output_proto.GetData<float>().ToArray();
-
- seg_result = result_pro.process_result(det_result_array, proto_result_array);
-
- double postprocessTime = stopwatch.Elapsed.TotalMilliseconds;
- stopwatch.Stop();
-
- double totalTime = preprocessTime + inferTime + postprocessTime;
-
- result_image = src.Clone();
- Mat masked_img = new Mat();
-
- // 将识别结果绘制到图片上
- for (int i = 0; i < seg_result.length; i++)
- {
- Cv2.Rectangle(result_image, seg_result.rects[i], new Scalar(0, 0, 255), 2, LineTypes.Link8);
- Cv2.Rectangle(result_image, new OpenCvSharp.Point(seg_result.rects[i].TopLeft.X, seg_result.rects[i].TopLeft.Y - 20),
- new OpenCvSharp.Point(seg_result.rects[i].BottomRight.X, seg_result.rects[i].TopLeft.Y), new Scalar(0, 255, 255), -1);
- Cv2.PutText(result_image, seg_result.classes[i] + "-" + seg_result.scores[i].ToString("0.00"),
- new OpenCvSharp.Point(seg_result.rects[i].X, seg_result.rects[i].Y - 5),
- HersheyFonts.HersheySimplex, 0.6, new Scalar(0, 0, 0), 1);
- Cv2.AddWeighted(result_image, 0.5, seg_result.masks[i], 0.5, 0, masked_img);
-
- sb.AppendLine($"{seg_result.classes[i]}:{seg_result.scores[i]:P0}");
- }
-
- if (seg_result.length > 0)
- {
- if (pictureBox2.Image != null)
- {
- pictureBox2.Image.Dispose();
- }
- pictureBox2.Image = new Bitmap(masked_img.ToMemoryStream());
- sb.AppendLine($"Preprocess: {preprocessTime:F2}ms");
- sb.AppendLine($"Infer: {inferTime:F2}ms");
- sb.AppendLine($"Postprocess: {postprocessTime:F2}ms");
- sb.AppendLine($"Total: {totalTime:F2}ms");
- textBox1.Text = sb.ToString();
- }
- else
- {
- textBox1.Text = "无信息";
- }
-
- masked_img.Dispose();
- result_image.Dispose();
- }
- }
-
- private void Form1_Load(object sender, EventArgs e)
- {
- image_path = "1.jpg";
- pictureBox1.Image = new Bitmap(image_path);
-
- startupPath = Application.StartupPath;
-
- model_path = startupPath + "\\crack_m_best.onnx";
- classer_path = startupPath + "\\lable.txt";
-
- List<string> str = new List<string>();
- StreamReader sr = new StreamReader(classer_path);
- string line;
- while ((line = sr.ReadLine()) != null)
- {
- str.Add(line);
- }
- class_names = str.ToArray();
-
- }
- }
- }
数据集
下载


评论记录:
回复评论: