首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

C# OpenCvSharp DNN Yolov8-OBB 旋转目标检测

  • 25-02-19 03:01
  • 3985
  • 6973
blog.csdn.net

目录

效果

模型信息

项目

代码

下载


C# OpenCvSharp DNN Yolov8-OBB 旋转目标检测

效果

模型信息

Model Properties
-------------------------
date:2024-02-26T08:38:44.171849
description:Ultralytics YOLOv8s-obb model trained on runs/DOTAv1.0-ms.yaml
author:Ultralytics
task:obb
license:AGPL-3.0 https://ultralytics.com/license
version:8.1.18
stride:32
batch:1
imgsz:[640, 640]
names:{0: 'plane', 1: 'ship', 2: 'storage tank', 3: 'baseball diamond', 4: 'tennis court', 5: 'basketball court', 6: 'ground track field', 7: 'harbor', 8: 'bridge', 9: 'large vehicle', 10: 'small vehicle', 11: 'helicopter', 12: 'roundabout', 13: 'soccer ball field', 14: 'swimming pool'}
---------------------------------------------------------------

Inputs
-------------------------
name:images
tensor:Float[1, 3, 640, 640]
---------------------------------------------------------------

Outputs
-------------------------
name:output0
tensor:Float[1, 20, 8400]
---------------------------------------------------------------

项目

代码

using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Windows.Forms;

namespace OpenCvSharp_DNN_Demo
{
    public partial class frmMain : Form
    {
        public frmMain()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";

        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;

        string modelpath;
        string classer_path;

        List class_names;

        Net opencv_net;
        Mat BN_image;

        Mat image;
        Mat result_image;

        string[] class_lables;

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;

            pictureBox1.Image = null;
            pictureBox2.Image = null;
            textBox1.Text = "";

            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            modelpath = "model/yolov8s-obb.onnx";
            classer_path = "model/lable.txt";

            opencv_net = CvDnn.ReadNetFromOnnx(modelpath);

            List str = new List();
            StreamReader sr = new StreamReader(classer_path);
            string line;
            while ((line = sr.ReadLine()) != null)
            {
                str.Add(line);
            }
            class_lables = str.ToArray();

            image_path = "test_img/1.png";
            pictureBox1.Image = new Bitmap(image_path);

        }

        private  void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
            textBox1.Text = "检测中,请稍等……";
            pictureBox2.Image = null;
            button2.Enabled = false;
            Application.DoEvents();

            image = new Mat(image_path);

            //图片缩放
            image = new Mat(image_path);
            int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
            Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
            Rect roi = new Rect(0, 0, image.Cols, image.Rows);
            image.CopyTo(new Mat(max_image, roi));

            float[] result_array;
            float factor = (float)(max_image_length / 640.0);

            // 将图片转为RGB通道
            Mat image_rgb = new Mat();
            Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);
            Mat resize_image = new Mat();
            Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));

            BN_image = CvDnn.BlobFromImage(resize_image, 1 / 255.0, new OpenCvSharp.Size(640, 640), new Scalar(0, 0, 0), true, false);

            //配置图片输入数据
            opencv_net.SetInput(BN_image);

            //模型推理,读取推理结果
            Mat[] outs = new Mat[1] { new Mat() };
            string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray();

            dt1 = DateTime.Now;

            opencv_net.Forward(outs, outBlobNames);

            dt2 = DateTime.Now;

            int num_proposal = outs[0].Size(1);
            int nout = outs[0].Size(2);

            if (outs[0].Dims > 2)
            {
                outs[0] = outs[0].Reshape(0, num_proposal);
            }

            Mat result_data = new Mat(20, 8400, MatType.CV_32F);
            result_data = outs[0].T();
            List position_boxes = new List();
            List class_ids = new List();
            List confidences = new List();
            List rotations = new List();
            // Preprocessing output results
            for (int i = 0; i < result_data.Rows; i++)
            {
                Mat classes_scores = new Mat(result_data, new Rect(4, i, 15, 1));
                OpenCvSharp.Point max_classId_point, min_classId_point;
                double max_score, min_score;
                // Obtain the maximum value and its position in a set of data
                Cv2.MinMaxLoc(classes_scores, out min_score, out max_score,
                    out min_classId_point, out max_classId_point);
                // Confidence level between 0 ~ 1
                // Obtain identification box information
                if (max_score > 0.25)
                {
                    float cx = result_data.At(i, 0);
                    float cy = result_data.At(i, 1);
                    float ow = result_data.At(i, 2);
                    float oh = result_data.At(i, 3);
                    double x = (cx - 0.5 * ow) * factor;
                    double y = (cy - 0.5 * oh) * factor;
                    double width = ow * factor;
                    double height = oh * factor;
                    Rect2d box = new Rect2d();
                    box.X = x;
                    box.Y = y;
                    box.Width = width;
                    box.Height = height;
                    position_boxes.Add(box);
                    class_ids.Add(max_classId_point.X);
                    confidences.Add((float)max_score);
                    rotations.Add(result_data.At(i, 19));
                }
            }

            // NMS 
            int[] indexes = new int[position_boxes.Count];
            CvDnn.NMSBoxes(position_boxes, confidences, 0.25f, 0.7f, out indexes);
            List rotated_rects = new List();
            for (int i = 0; i < indexes.Length; i++)
            {
                int index = indexes[i];
                float w = (float)position_boxes[index].Width;
                float h = (float)position_boxes[index].Height;
                float x = (float)position_boxes[index].X + w / 2;
                float y = (float)position_boxes[index].Y + h / 2;
                float r = rotations[index];
                float w_ = w > h ? w : h;
                float h_ = w > h ? h : w;
                r = (float)((w > h ? r : (float)(r + Math.PI / 2)) % Math.PI);
                RotatedRect rotate = new RotatedRect(new Point2f(x, y), new Size2f(w_, h_), (float)(r * 180.0 / Math.PI));
                rotated_rects.Add(rotate);
            }

            result_image = image.Clone();

            for (int i = 0; i < indexes.Length; i++)
            {
                int index = indexes[i];
                Point2f[] points = rotated_rects[i].Points();

                for (int j = 0; j < 4; j++)
                {
                    Cv2.Line(result_image, (OpenCvSharp.Point)points[j], (OpenCvSharp.Point)points[(j + 1) % 4], new Scalar(0, 255, 0), 2);
                }

                Cv2.PutText(result_image, class_lables[class_ids[index]] + "-" + confidences[index].ToString("0.00"),
                    (OpenCvSharp.Point)points[0], HersheyFonts.HersheySimplex, 0.8, new Scalar(0, 0, 255), 2);
            }

            pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";

            button2.Enabled = true;
        }

        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }

        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }
    }
}

  1. using OpenCvSharp;
  2. using OpenCvSharp.Dnn;
  3. using System;
  4. using System.Collections.Generic;
  5. using System.Drawing;
  6. using System.IO;
  7. using System.Linq;
  8. using System.Windows.Forms;
  9. namespace OpenCvSharp_DNN_Demo
  10. {
  11. public partial class frmMain : Form
  12. {
  13. public frmMain()
  14. {
  15. InitializeComponent();
  16. }
  17. string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
  18. string image_path = "";
  19. DateTime dt1 = DateTime.Now;
  20. DateTime dt2 = DateTime.Now;
  21. string modelpath;
  22. string classer_path;
  23. List<string> class_names;
  24. Net opencv_net;
  25. Mat BN_image;
  26. Mat image;
  27. Mat result_image;
  28. string[] class_lables;
  29. private void button1_Click(object sender, EventArgs e)
  30. {
  31. OpenFileDialog ofd = new OpenFileDialog();
  32. ofd.Filter = fileFilter;
  33. if (ofd.ShowDialog() != DialogResult.OK) return;
  34. pictureBox1.Image = null;
  35. pictureBox2.Image = null;
  36. textBox1.Text = "";
  37. image_path = ofd.FileName;
  38. pictureBox1.Image = new Bitmap(image_path);
  39. image = new Mat(image_path);
  40. }
  41. private void Form1_Load(object sender, EventArgs e)
  42. {
  43. modelpath = "model/yolov8s-obb.onnx";
  44. classer_path = "model/lable.txt";
  45. opencv_net = CvDnn.ReadNetFromOnnx(modelpath);
  46. List<string> str = new List<string>();
  47. StreamReader sr = new StreamReader(classer_path);
  48. string line;
  49. while ((line = sr.ReadLine()) != null)
  50. {
  51. str.Add(line);
  52. }
  53. class_lables = str.ToArray();
  54. image_path = "test_img/1.png";
  55. pictureBox1.Image = new Bitmap(image_path);
  56. }
  57. private void button2_Click(object sender, EventArgs e)
  58. {
  59. if (image_path == "")
  60. {
  61. return;
  62. }
  63. textBox1.Text = "检测中,请稍等……";
  64. pictureBox2.Image = null;
  65. button2.Enabled = false;
  66. Application.DoEvents();
  67. image = new Mat(image_path);
  68. //图片缩放
  69. image = new Mat(image_path);
  70. int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
  71. Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
  72. Rect roi = new Rect(0, 0, image.Cols, image.Rows);
  73. image.CopyTo(new Mat(max_image, roi));
  74. float[] result_array;
  75. float factor = (float)(max_image_length / 640.0);
  76. // 将图片转为RGB通道
  77. Mat image_rgb = new Mat();
  78. Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);
  79. Mat resize_image = new Mat();
  80. Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));
  81. BN_image = CvDnn.BlobFromImage(resize_image, 1 / 255.0, new OpenCvSharp.Size(640, 640), new Scalar(0, 0, 0), true, false);
  82. //配置图片输入数据
  83. opencv_net.SetInput(BN_image);
  84. //模型推理,读取推理结果
  85. Mat[] outs = new Mat[1] { new Mat() };
  86. string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray();
  87. dt1 = DateTime.Now;
  88. opencv_net.Forward(outs, outBlobNames);
  89. dt2 = DateTime.Now;
  90. int num_proposal = outs[0].Size(1);
  91. int nout = outs[0].Size(2);
  92. if (outs[0].Dims > 2)
  93. {
  94. outs[0] = outs[0].Reshape(0, num_proposal);
  95. }
  96. Mat result_data = new Mat(20, 8400, MatType.CV_32F);
  97. result_data = outs[0].T();
  98. List<Rect2d> position_boxes = new List<Rect2d>();
  99. List<int> class_ids = new List<int>();
  100. List<float> confidences = new List<float>();
  101. List<float> rotations = new List<float>();
  102. // Preprocessing output results
  103. for (int i = 0; i < result_data.Rows; i++)
  104. {
  105. Mat classes_scores = new Mat(result_data, new Rect(4, i, 15, 1));
  106. OpenCvSharp.Point max_classId_point, min_classId_point;
  107. double max_score, min_score;
  108. // Obtain the maximum value and its position in a set of data
  109. Cv2.MinMaxLoc(classes_scores, out min_score, out max_score,
  110. out min_classId_point, out max_classId_point);
  111. // Confidence level between 0 ~ 1
  112. // Obtain identification box information
  113. if (max_score > 0.25)
  114. {
  115. float cx = result_data.At<float>(i, 0);
  116. float cy = result_data.At<float>(i, 1);
  117. float ow = result_data.At<float>(i, 2);
  118. float oh = result_data.At<float>(i, 3);
  119. double x = (cx - 0.5 * ow) * factor;
  120. double y = (cy - 0.5 * oh) * factor;
  121. double width = ow * factor;
  122. double height = oh * factor;
  123. Rect2d box = new Rect2d();
  124. box.X = x;
  125. box.Y = y;
  126. box.Width = width;
  127. box.Height = height;
  128. position_boxes.Add(box);
  129. class_ids.Add(max_classId_point.X);
  130. confidences.Add((float)max_score);
  131. rotations.Add(result_data.At<float>(i, 19));
  132. }
  133. }
  134. // NMS
  135. int[] indexes = new int[position_boxes.Count];
  136. CvDnn.NMSBoxes(position_boxes, confidences, 0.25f, 0.7f, out indexes);
  137. List<RotatedRect> rotated_rects = new List<RotatedRect>();
  138. for (int i = 0; i < indexes.Length; i++)
  139. {
  140. int index = indexes[i];
  141. float w = (float)position_boxes[index].Width;
  142. float h = (float)position_boxes[index].Height;
  143. float x = (float)position_boxes[index].X + w / 2;
  144. float y = (float)position_boxes[index].Y + h / 2;
  145. float r = rotations[index];
  146. float w_ = w > h ? w : h;
  147. float h_ = w > h ? h : w;
  148. r = (float)((w > h ? r : (float)(r + Math.PI / 2)) % Math.PI);
  149. RotatedRect rotate = new RotatedRect(new Point2f(x, y), new Size2f(w_, h_), (float)(r * 180.0 / Math.PI));
  150. rotated_rects.Add(rotate);
  151. }
  152. result_image = image.Clone();
  153. for (int i = 0; i < indexes.Length; i++)
  154. {
  155. int index = indexes[i];
  156. Point2f[] points = rotated_rects[i].Points();
  157. for (int j = 0; j < 4; j++)
  158. {
  159. Cv2.Line(result_image, (OpenCvSharp.Point)points[j], (OpenCvSharp.Point)points[(j + 1) % 4], new Scalar(0, 255, 0), 2);
  160. }
  161. Cv2.PutText(result_image, class_lables[class_ids[index]] + "-" + confidences[index].ToString("0.00"),
  162. (OpenCvSharp.Point)points[0], HersheyFonts.HersheySimplex, 0.8, new Scalar(0, 0, 255), 2);
  163. }
  164. pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
  165. textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
  166. button2.Enabled = true;
  167. }
  168. private void pictureBox2_DoubleClick(object sender, EventArgs e)
  169. {
  170. Common.ShowNormalImg(pictureBox2.Image);
  171. }
  172. private void pictureBox1_DoubleClick(object sender, EventArgs e)
  173. {
  174. Common.ShowNormalImg(pictureBox1.Image);
  175. }
  176. }
  177. }

下载

源码下载

天天代码码天天
微信公众号
.NET 人工智能实践
注:本文转载自blog.csdn.net的天天代码码天天的文章"https://lw112190.blog.csdn.net/article/details/136298717"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2492) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top