首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

知识蒸馏中有哪些经验| 目标检测 |mobile-yolov5-pruning-distillation项目中剪枝知识分析

  • 25-02-18 14:00
  • 4287
  • 8807
blog.csdn.net

项目地址:https://github.com/Syencil/mobile-yolov5-pruning-distillation
项目时间:2022年
mobile-yolov5-pruning-distillation是一个以yolov5改进为主的开源项目,主要包含3中改进方向:更改backbone、模型剪枝、知识蒸馏。这里主要研究其知识蒸馏部分,根据其分享的实验数据,获取对目标检测中模型剪枝的认知。希望阅读本博文的读者,能给项目一个satr。
在这里插入图片描述
该项目中关于知识蒸馏首先介绍了基本分类情况,关于实验主要是分享了三种蒸馏策略下的模型效果。

蒸馏是希望将T模型学习到的知识迁移到S模型中。通常蒸馏方式大体可以分为:1)Response-based,2)Feature-based,3)Relation-based。

按照策略则可以分为1)online distillation,2)offline distillation 和3)self distillation

按照蒸馏算法可以分为1)adversarial distillation,2)multi-teacher distillation, 3)cross-modal distillation,4)graph-based distillation,5)attention-based distillation,6)data-free distillation,7)quatized Distillation,8)lifelong distillation, 9)nas distillation。

mobile-yolov5-pruning-distillation项目将采用多种不同的蒸馏方式尝试对mobilev2-yolo5s提点,每一种Strategy都对应有相关论文。并不是每一种方式都有效,可能和组合方式以及参数调节都有关。

在这里插入图片描述

1、Strategy 1 Output-based Distillation

以mobilev2-yolo5s作为S-model,希望能将T-model在coco和voc上学习到的知识蒸馏到mobilev2-yolo5s中。以Object detection at 200 Frames Per Second为基础方法配置蒸馏损失函数,抑制背景框带来的类别不均衡问题。 用L2 loss作为蒸馏基础函数,损失中的蒸馏dist平衡系数选择为1。

选取基于darknet为backbone的yolo5s作为T模型。这样能尽可能的保证结构上的一致。而yolo5s的参数量和计算量差不多正好是mobilev2-yolo5s的两倍, capacity gap并不是很明显。蒸馏后提了接近3个点。

这里所表明2点信息:
1、参考Object detection at 200 Frames Per Second抑制背景框蒸馏,可以提示3个点的map 2、在教师模型与学生模型间gap过大,会影响蒸馏效果,反而不如gap低的低精度教师模型效果好

在这里插入图片描述

2、Strategy 2 Feature-based+Output-based Distillation

Strategy 1仅仅只是蒸馏最后一个输出层,属于distillation中Response-Based。考虑到特征提取也是可以进行蒸馏的,提升backbone在特征提取上的表征能力。 对于T和S特征图之间维度存在不匹配的情况,我们首先应用一个Converter网络将通道数转换成相同的 这个思想在FitNet上就提出过,实际操作中更类似于如下
在这里插入图片描述
实验效果一 尝试将特征图和输出层一起作为蒸馏指导。对于T和S中间特征图输出维度不匹配的问题,采用在S网络输出接一个Converter,将其升维到T网络匹配。 Converter由conv+bn+relu6组成,T网络输出单独接一个relu6,保证激活函数相同。 output层参数为1.0,feature参数为0.5。mAP0.663甚至比baseline都要低。 蒸馏效果如下所示
在这里插入图片描述
feature distillation居然让模型掉点了,怀疑是feature权重太大。loss与map日志如下:
1、loss降到0.1667,mAP可以提升到0.68,还是低于baseline。
2、继续下降到0.05,mAP可以回到baseline的水平,
3、在训练末期mAP还在上升,loss还在下降。最后尝试训练100个epoch,mAP才回到74。

实际上还尝试过各种变形和各种参数,但是感觉效果仍然不好。这表明进行feature distillation对于目标检测而言很大概率是一个负优化

3、Strategy 3 Teach-Assistant Distillation

在Strategy 1.2的实验中可以看出,T越强力蒸馏的S提升并不一定更多,反而更低。类似的实验在TADK也有。 用yolov5l作为T网络提升不高的原因可能有2点。1)T更复杂,S没有足够的capacity来模仿T,2)T的精度更高,模型确定性更强,输出logits(soft label)变得less soft。 但是我想让更大的yolov5l作为指导网络,那么可以利用yolov5s作为助教网络辅助蒸馏。

将yolov5l作为T网络,yolov5s作为TA网络(这里T和TA之间其实差距也是非常大的,7倍差距),mobilev2-yolo5s作为S网络。

  • 首先对TA蒸馏,提升yolov5s在voc上的mAP。
  • 其次利用TA对S蒸馏。

不过从TA的精度来看,由于T和TA存在显著的能力gap,蒸馏出的TA并没有精度上,故没有进行第二步蒸馏。
在这里插入图片描述

5、同类型蒸馏模型精度

基于项目作者分享的信息,可以发现所得到的模型效果还是较为可观的。
在这里插入图片描述

执行不同蒸馏策略的代码如下
在这里插入图片描述

注:本文转载自blog.csdn.net的万里鹏程转瞬至的文章"https://hpg123.blog.csdn.net/article/details/144118730"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2492) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top