首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

GraphRAG、Naive RAG框架总结主流框架推荐(共23个):LightRAG、nano-GraphRAG、Fast-GraphRAG、Dify、RAGflow等

  • 25-02-18 13:40
  • 2197
  • 12463
blog.csdn.net

设想你正致力于构建一个智能问答系统,该系统旨在从庞大的知识库中迅速而精确地提取关键信息,并据此生成自然流畅的回答。然而,随着数据规模的不断扩大,系统面临着严峻的挑战:检索效率逐渐下滑,生成内容的质量亦趋于下降。这正是当前众多检索增强型生成(RAG)系统亟需解决的核心问题——如何在数据冗余、检索效率低下以及生成内容不相关之间找到一个最佳的平衡点。

RAG 的发展瓶颈:
传统 RAG 系统通过检索模型提取最相关的文档,再交给生成模型处理。但这种流水线式的设计存在两个主要问题:

  1. 检索不够精确:简单的相似性检索模型容易漏掉重要信息或引入噪声数据。

  2. 生成效率低下:无关或低质量的上下文增加了生成负担,降低了回答的质量和速度。

1. GraphRAG 框架 介绍

GraphRAG框架在微软公司内部广受赞誉,并以此为契机,衍生出了一系列轻量级的优化版本,诸如LightRAG与nano-GraphRAG等。与此同时,还涌现出了一些别具一格的变体,如KAG框架。这些框架的核心改进之处在于,它们在传统RAG框架的基础上,进一步强化了实体、社区以及文本切块(Chunking)之间的内在联系,并且巧妙地将现有知识图谱(KG)中的知识融入其中。这

汀丶人工智能
微信公众号
关于机器学习、强化学习、数据挖掘以及NLP
注:本文转载自blog.csdn.net的汀、人工智能的文章"https://blog.csdn.net/sinat_39620217/article/details/144094342"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2492) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

101
推荐
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top